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A simple model of surrounding gate short-channel nanowire MOSFET current-voltage characteristic has been proposed. 
This model belongs to the class of drift-diffusion ones; it has been inspired by the corresponding long-channel models and 
should be considered as their naturally constructed extension. The accuracy of the developed model has been verified by 
comparison with available simulation results as well as with previous models calculations.  
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1. Introduction  
 

In the last fifteen years different types of multiple-gate 

MOSFETs with specific geometry tend to take place of 

planar MOSFETs and that way continue the dominance of 

unipolar devices in the traditional field of their application. 

Among them, cylindrical surrounding gate MOSFETs are 

believed to have the best control of short-channel effects. 

Therefore, the construction of reliable current -voltage 

characteristic for such devices including various 

procedures of Poisson's equation solving emerges as a 

huge challenge for a plenty of scientists. In the recent 

history of such efforts the model for long-channel devices 

based on the solution of one-dimensional (1D) Poisson's 

equation has been developed. This model included the 

nonzero doping concentration, while the extension of this 

model has examined the effect of carriers’ mobility 

degradation [1]. But if we wish to continue beyond the 

conventional scaling limit two-dimensional analysis of 

Poisson's equation becomes necessary. The exact two-

dimensional treatment is possible to be performed, but its 

results turn out not transparent enough and are not 

convenient for constructing models useful for practical 

purposes. That's why so much attention is paid to 

approximate analytical (as long as possible) solutions to 

the Poisson’s equation. In the recent literature its two-

dimensional solution is reported only in the case when the 

channel was fully depleted, i.e. in the case when the 

carriers concentration contribution to the Poisson’s 

equation was totally ignored [2]. This procedure can only 

describe subthreshold regime, but fails in attempt to 

predict current-voltage characteristic above threshold [3].  

The aim of this paper is not to ignore the described 

carriers’ concentration contribution, i.e. to investigate the 

situation above threshold. The nonzero doping 

concentration has been maintained, while the carriers’ 

mobility was set constant over the whole cross-section for 

the sake of simplicity (and independent on radial electric 

field as well). The obtained results offer some interesting 

features. 

 

2. Model description  
 

Fig. 1 shows the cross-sectional view of cylindrical 

gate nanowire MOSFET considered in this paper. The 

source and drain are n
+
 heavily doped, while the 

cylindrical silicon body is p-doped (NA). R denotes silicon 

body radius, NA-its doping concentration and tox being 

oxide thickness. There are no oxide charges, no work 

function difference exists and the flat band-voltage is set 

to be zero. For silicon body radius and doping 

concentration concerned in this paper the inversion layer 

quantum effects are verified to be negligible.  

 

 
Fig. 1.  A cross-sectional view of cylindrical gate  

nanowire MOSFET 

 

 

Starting point of the suggested analysis is two-

dimensional (2D) Poisson’s equation written in cylindrical 

coordinates (the symmetry with respect to angular 

coordinate φ is already accounted for): 
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valid for mobile charges concentration, where q is the 

electronic charge, ni is the intrinsic silicon electron 

concentration, εsi is the permittivity of silicon t=kT/q is 

the thermal potential and ψF is the quasi-Fermi level. 

Opposite to the subthreshold region, both fixed and mobile 

charge densities are not negligible. The one dimensional 

solution to this problem describing long-channel devices 

simply neglected the longitudinal term 2 2z  in 

equation (1a) expecting it to be reasonably small due to the 

huge value of L/R ratio. But in the analysis intended to be 

performed in this paper, the mentioned ratio is 

considerably reduced. The question that naturally arises is 

how to take into account this longitudinal term with the 

tolerable level of simplicity loss. The first idea how to 

successfully achieve this goal is to set it constant, i.e. 

independent of coordinates r, z. This will not result in 

accurate solution of equation (1a) all over the examined 

structure, but undoubtly is a step toward a satisfactory 

picture of mobile charge distribution in it. This constant 

should of course depend on drain-to-source voltage VDS as 

a parameter, so the next step would be to make an 

educated guess and argue how should it look like. For 

small values of the parameter VDS, the longitudinal term 
2 2z   should be proportional to it (VDS) and L

-2
 (in the 

natural extension to long-channel devices this term must 

vanish). But the increase of 2 2z  cannot follow the 

increase of VDS endlessly; for higher values of VDS this 

term is expected to become saturated. First, the 

longitudinal term 2 2z   starts to dominate over radial 

term 2
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 either for large values of VDS or for 

small values of channel length L. Second, so strong lateral 

electric field (much stronger than the radial one) begins to 

remove mobile charges from the silicon body and so 

creates the depleted region spreading from drain to source 

terminal. A described assumption can be written in the 

following manner [4]: 
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for extremely large values of VDS     
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The next step followed the idea to meet the both of 

these two requirements, as well as to successfully express 

this longitudinal term in the case of medium VDS voltages. 

A good and prospective candidate with such performances 

is a simple expression: 
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The advantage of such assumption is recognized if the 

lateral term described by one-piece expression (3) is 

inserted into two-dimensional Poisson's equation (1): 
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which is immediately reduced to its following form: 
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    (5) 

This way two-dimensional analysis of the problem has 

been reduced to one-dimensional case. Fortunately, the 

obtained equation (5) is exactly of the same form as the 

equation describing one-dimensional problem: 
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The only difference between equations (5) and (6) is 

the presence of drain-to-source voltage VDS in equation (5) 

as a parameter. Effectively, the doping concentration NA 

seems to be renormalized as follows [4]: 
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i.e. it is reduced to significantly lower values. The solution 

of the equation (6) is well known in the literature; because 

of its significance it is cited here once again: 

and 
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Parameter (0,1)  is credibly argued in the available 

literature and turns out to be crucial for the derivation of 

current-voltage characteristic. Following this way the 

solution to equation (5) can be written in a straight-

forward manner: 
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The quasi-Fermi potential V(z) introduced instead of 

Fermi potential ψF takes values V(0)=0 and V(L) =VDS at 

source and drain terminals, respectively and provides the 

potential dependence on the coordinate z. The solution 

(9a) and (9b) is completed with the usual set of boundary 

conditions describing the electrostatics without any 

charges at the interface: 
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The elimination of C1(z) and C2(z) from relation (9b) by 

means of relation (10) directly provides quasi-Fermi 

potential dependence on parameter α: 
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with the following abbreviation: 
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Relation (11) is of crucial importance for the final aim 

of this paper, i.e. the construction of current-voltage 

characteristic. 

 

 

3. Current-voltage characteristic 
 

In the frame of drift-diffusion model the infinitesimal 

drain current through the infinitesimal symmetrical cross-

section of cylindrical surrounding gate MOSFET becomes 

[5]: 

 

 , 2D

dV
dI qn r z rdr

dz
       (13) 

 

Integrating relation (13) over the cross-section of the 

cylinder one immediately obtains [6]: 
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where ( )f   denotes [1]: 
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Relation (14) is now integrated over longitudinal 

coordinate z from source to drain terminal [6]: 
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The derivative dV d  is simply calculated from 

relation (13): 
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while αs, αd denote the values of parameter α at the source 

and drain end, respectively. They are straight-forward 

obtained using relation (11) with described boundary 

conditions: 
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For the values of geometric and technological 

parameters anticipated in this paper the evaluation of f(α) 

(15) can be considerably simplified. It is easily argued that 

the exponent in relation (15) can be expanded into series 

with only first and second terms retained. After tedious, 

but straight-forward transformations, relation (15) gets its 

final form: 
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At the end of current-voltage characteristic 

construction procedure is useful to remind the reader that 

the mobility is set constant (μ0) over the whole structure. 

Relations that complete the compact model deserve to be 

mentioned again: (16), (17), (18) and (19). 

 

 

4. Numerical results and model verification 
 

The consequences of the suggested procedure are 

tested for a specific set of geometric and technological 

parameters (Table 1). 

 

 
Table 1. Geometrical and technological parameters used for 

model testing 

 

tox=1.5nm 

R=5nm 

NA=10
24

m
-3 

 

εSi=11.8·8.85·10
-12 

F/m 

εox=3.9·8.85·10
-12 

F/m 

VG=1V 

μ0=0.2 m
2
/(V·s) 

L=300nm 

L=40nm 

L=30nm 

L=20nm 

L→0 

 

The algebraic equations (18a) and (18b) are easily 

solved using any of available numerical tools. Relations 

(17) and (19) are simply inserted into expression (16), 

which is then integrated without any problems. Although 

the numerical treatment is necessary and the model cannot 

be recognized as analytical, it is still simple enough to be 

incorporated into more complex electronic circuits and 

convenient enough for CAD (computer-aided-design). 

For the sake of having better insight into obtained 

results the calculated current-voltage characteristic has 

been shown in Figs. 2 and 3. Fig. 2 brings drain current in 

dimensionless form, i.e. the real drain current is divided by 

a constant term [7, 8]: 
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for various values of channel length as a parameter. The 

intention of introducing this way normalized drain current 

was to underline the consequences of the calculating 

procedure suggested in this paper. Several interesting and 

intriguing conclusions emerge. 

First, the normalized drain current globally decreases 

if the channel length L scales down. For hypothetically 

small values of L (L→0) the influence of doping 

concentration is lost and our result tends to undoped 

sample result (e) which lies far bellow the others (a, b, c, 

d). 

Second, for ultra high values of drain-to-source 

voltage VDS, the normalized doping concentration 

described by relation (7) is reduced to zero, causing this 

way the same effect as L→0. The consequence is that all 

the graphs for different L (a, b, c, d, e) meet together as 

horizontal limes for high values of VDS. Therefore graphs 

(a, b, c, d) show the feature of negative differential 

resistance. This might be surprising since even the 

announcement of negative differential resistance has not 

been observed in the case of planar devices. So, if true, it 

can be explained as a direct consequence of cylindrical 

geometry of investigated devices. It is also fair to say that 

the described unique asymptotic behavior of graphs (a, b, 

c, d) happens for such high values of drain-to-source 

voltage VDS, hence playing no significant role for practical 

purpose. 

 
 

Fig. 2.  Normalized drain current ID
* (in relative units) 

versus  drain-to-source voltage VDS  for  various  channel  

                              length as a parameter 

 

 
 

Fig. 3.  Drain current ID  according to relation (20) versus  

drain-to-source voltage VDS for various values of channel length 

 

 

Fig. 3 brings the real drain current ID versus drain-to-

source voltage VDS, either calculated according to the 

suggested model or the results obtained using conventional 

simulation tools (ATLAS…) [9]. The situation seems to be 

quite different from one described in Fig. 2; Owing to L
-2

 

dependence of relation (20) the real drain current is 

increased as the channel length scales down. The slightly 

announced negative differential resistance region is still 

present for VDS>0.5V, while the agreement with 2D 

simulation results is satisfactory. 

 

 

5. Conclusion 
 

In this paper the original procedure for approximate 

analytical solving of two-dimensional Poisson’s equation 

has been carried out. Based on this solution, a new model 

of current-voltage characteristic for short-channel 

nanowire MOSFETs has been proposed. This model is 

entirely analogous to the (one-dimensional) long-channel 
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nanowire MOSFETs model and can be recognized as its 

natural extension to the two-dimensional case. The 

developed procedure is applicable even in the case when 

the mobile charge concentration is not negligible, i.e. in 

the above threshold regime and is free of fitting 

parameters. The model has been verified by comparison 

with 2D simulations. 
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